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The linear, nonlinear and breakdown stages in the transition of localized disturbances 
in plane Poiseuille flow is studied by direct numerical simulations and analysis of the 
linearized Navier-Stokes equations. Three-dimensionality plays a key role and allows 
for algebraic growth of the normal vorticity through the linear lift-up mechanism. This 
growth primarily generates elongated structures in the streamwise direction since it is 
largest at low streamwise wavenumbers. For finite-amplitude disturbances such 
structures will be generated essentially independent of the details of the initial 
disturbance, since the preferred nonlinear interactions transfer energy to low 
streamwise wavenumbers. The nonlinear interactions also give a decrease in the span- 
wise scales. For the stronger initial disturbances the streamwise vorticity associated 
with the slightly inclined streaks was found to roll up into distinct streamwise vortices 
in the vicinity of which breakdown occurred. The breakdown starts with a local rapid 
growth of the normal velocity bringing low-speed fluid out from the wall. This 
phenomenon is similar to the low-velocity spikes previously observed in transition 
experiments. Soon thereafter a small turbulent spot is formed. This scenario represents 
a bypass of the regular Tollmien-Schlichting, secondary instability process. The 
simulations have been carried out with a sufficient spatial resolution to ensure an 
accurate description of all stages of the breakdown and spot formation processes. The 
generality of the observed processes is substantiated by use of different types of initial 
disturbances and by Blasius boundary-layer simulations. The present results point in 
the direction of universality of the observed transition mechanisms for localized 
disturbances in wall-bounded shear flows. 

1. Introduction 
The importance of three-dimensional components in the process of transition to 

turbulence has become widely recognized, and a growing amount of interest is being 
paid to the scenario of transition from strongly three-dimensional perturbations in the 
form of localized disturbances or simply oblique waves. The fact that the infinitesimal 
wave that first becomes unstable when the Reynolds number passes the critical value 
is a two-dimensional one lead to a focusing of interest, in the early studies of transition, 
on purely two-dimensional waves or disturbances with the dominating part of the 
energy in the two-dimensional wave component (see e.g. the review article of Reshotko 
1976). 
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For infinitesimal amplitudes the disturbance development for a parallel mean flow 
is governed by the Orr-Sommerfeld (0s) equation supplemented by a non- 
homogeneous equation for the vorticity component in the wall-normal direction. For 
purely two-dimensional waves the forcing term is zero in the latter equation and the 
homogeneous part is associated with damped so-called Squire (SQ) modes. For oblique 
waves, and three-dimensional disturbances in general, a new element enters the 
problem in that a non-zero forcing term appears for the normal vorticity. This forcing 
is directly proportional to the spanwise derivative of the normal velocity and leads to 
qualitatively new possibilities for disturbance growth as compared to the case with 
two-dimensional waves. The importance of spanwise variation of the velocity 
components in the transition process was brought to particular attention by the 
boundary-layer experiments of Klebanoff, Tidstrom & Sargent (1962) who recognized 
that rapid growth of three-dimensional distortions of a primary two-dimensional 
finite-amplitude wave is largely responsible for the explosive breakdown to turbulence 
in this type of scenario. 

Subsequent studies, theoretical and experimental, have shown that several different 
three-dimensional growth mechanisms exist within the concept of secondary instability 
of superimposed oblique waves on a finite-amplitude two-dimensional primary wave 
(for a review of the recent literature, see Herbert 1988 and Bayly, Orszag & Herbert 
1988). The agreement is excellent between theoretical predictions based on Floquet 
theory and experimental observations of the early part of the evolution of the oblique 
waves both for the fundamental (or K-type) and the subharmonic types of instability. 
Both these instabilities develop into lambda vortices. In the fundamental type they 
occur aligned in the streamwise direction, whereas for the subharmonic case they occur 
in a staggered pattern. Detached shear layers in the streamwise velocity form above the 
lambda structures. The shear layers then intensify, become elongated and roll up, 
which in the experimental observations has been described in terms of low-velocity 
spikes. 

Direct numerical simulations play an increasingly important role in investigations of 
these phenomena and for transition research in general (see e.g. the recent review of 
Kleiser & Zang 1991). The early stages of the fundamental type of secondary instability 
in the boundary layer was simulated by Murdock (1986). Spalart & Yang (1987) 
allowed the three-dimensional disturbances to develop from random noise super- 
imposed on the primary wave in a box with large spanwise extent. Both fundamental 
and subharmonic secondary instability processes have now been studied through direct 
numerical simulations (see e.g. Fasel, Rist & Konzelmann 1990). The secondary 
instability processes exist in boundary layers as well as channel flow, and in the latter 
case, operate at Reynolds numbers, Re, down to roughly 1000 (based half-width and 
centreline velocity). This is also in the lower end of the regime where experiments have 
shown that regions of turbulence can be sustained and grow. 

Transition in channel flow has been investigated through direct numerical 
simulations for over a decade (Orszag & Kells 1980; Orszag & Patera 1983). Secondary 
and tertiary instabilities in plane Poiseuille flow were studied via use of simulations by 
Zang & Krist (1989). They demonstrated that the growth of the oblique waves is 
strongly dependent on the coexistence of a mode with zero streamwise wavenumber 
(a = 0), a fact that has also been noted in earlier investigations. In fact, they showed 
that an amplitude of the a = 0 mode comparable to that of the oblique wave is a 
prerequisite for the onset of the growth in the fundamental secondary instability. This 
was further illustrated by reduced growth rates in simulations where the a = 0 mode 
was artificially suppressed. This was particularly conspicuous in the situation at 
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strongly subcritical Reynolds numbers. We will later see the primary importance of 
a = 0 components in the algebraic instability and subsequent breakdown of localized 
disturbances. The complete transition process in channel flow, starting with the 
fundamental secondary instability process, was treated by Gilbert (1988) (see also 
Gilbert & Kleiser 1990) in an accurate direct simulation at Re = 5000. 

Although the secondary instability operates at subcritical Reynolds numbers the 
presumed initial state consisting of a finite-amplitude two-dimensional wave is highly 
unlikely to occur spontaneously in channel flow or in non-inflexional flows in general 
(Schubauer & Skramstad 1947). Significant three-dimensional developments are 
indeed likely to occur in natural transition before a two-dimensional equilibrium state 
is reached. Note also that exponential growth rates in non-inflexional flows are quite 
small even at large Reynolds numbers. The maximum growth rate in channel flow 
(attained at Re w 48000) corresponds to a tenfold increase in amplitude in about 150 
channel widths (Bayley et al. 1988). 

In studies using numerical simulations some investigators have tried to let the 
natural selection processes determine the preferred two- and three-dimensional 
instability mechanisms. Kim & Moser (1989) used an initial disturbance field in 
channel flow consisting of random numbers and found a preferred selection of 
longitudinal vortex modes. These essentially a = 0 modes may be expected to appear 
in this process since they are only marginally damped (damping rate is O(l /Re )  at 
infinitesimal amplitudes for a = 0). The Squire (1933) theorem has sometimes been 
misinterpreted to mean that two-dimensional waves are always the least stable ones 
and that most transition processes start with two-dimensional waves. One should keep 
in mind, however, that at subcritical Reynolds numbers the damping of the highly 
oblique waves may be smaller than for the least-damped two-dimensional wave. The 
highly oblique waves can also experience rapid algebraic growth. For a small- 
amplitude disturbance with spanwise but no streamwise variation Ellingsen & Palm 
(1975) showed that in the inviscid case the streamwise velocity component grows 
linearly, i.e. algebraically, with time. 

In natural transition flow perturbations are likely to emanate from spatially localized 
effects such as surface irregularities. A natural approach to the study of such transition 
processes is therefore to investigate the development of different types of localized 
disturbances. In the present study we focus on subcritical disturbances which initially 
exhibit a strong degree of three-dimensionality. 

Landahl (1980) analysed a localized disturbance and found that the disturbance 
energy in inviscid flows grows at least linearly in time if wavenumbers with a zero 
streamwise component are excited. In physical space this is manifested as an elongation 
of the disturbance in addition to the growth in amplitude. Hultgren & Gustavsson 
(1981) extended this analysis to show that the algebraic growth persists in the viscous 
case for the initial phase of the evolution, but that eventually viscous damping leads 
to decay. They also showed that the algebraic growth in boundary layers is associated 
with the continuous spectra of the Orr-Sommerfeld and Squire equations for large 
streamwise scales. In channel flow a viscous analysis of the evolution (Henningson 
1991) shows that the growth can be regarded as an effect of a near resonance between 
slightly damped, highly oblique Orr-Sommerfeld and Squire modes. The initial growth 
rates in this transient type of evolution are usually orders of magnitude larger than 
typical viscous growth rates found in unstable shear flows (Gustavsson 1991; 
Henningson 199 1). 

To study the evolution of localized disturbances theoretically the initial value 
problem is the natural starting point. A Fourier-Laplace solution to the viscous linear 
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initial value problem in plane Couette flow was presented by Gustavsson & Hultgren 
(1980). When the Laplace integral is inverted the solution can be written as a sum of 
linear eigenmodes. If a continuous spectrum is present, such as for boundary-layer 
flows, it also appears naturally in the Laplace inversion (see Gustavsson 1979). For 
bounded flows, where the normal modes have been shown to form a complete set 
(DiPrima & Habetier 1969), one may directly assume that the solution can be written 
as a sum of the eigenmodes. This approach has been outlined by, among others 
Schensted (1961) and Eckhaus (1965) for two-dimensional flows and by Henningson 
& Schmid (1992) for the three-dimensional case. 

The evolution of finite-amplitude disturbances can also be studied using the 
expansion technique. If the flow variables are expanded in eigenmodes of the linearized 
problem the nonlinearity will appear as quadratic interactions between the modes. 
Eckhaus ( 1965) derived the complete solution for two-dimensional plane Poiseuille 
flow in this manner and the solution for the three-dimensional case is discussed by 
Henningson & Schmid (1992). 

The numerical simulations of localized vortical structures by Henningson, Johansson 
& Lundbladh (1990) indicated that the algebraic growth also plays an important role 
for finite-amplitude disturbances. It was found that energy was transferred to higher 
spanwise wavenumbers due to nonlinear interactions between the initially most 
energetic modes and waves exhibiting algebraic growth. The preferential excitation of 
components with higher spanwise wavenumbers appears to be quite general and is also 
indicated by the results of Breuer & Landahl (1990) in their boundary-layer 
investigation of finite-amplitude disturbances, as well as by Cohen, Breuer & 
Haritonidis (1991) in a study of the nonlinear breakdown of a wave packet. This 
nonlinear mechanism will be studied in detail in the present paper. 

Disturbance growth and breakdown on a timescale much shorter than those typical 
for Tollmien-Schlichting (TS) waves has been called bypass transition (see Morkovin 
1969), a term used to emphasize that these scenarios bypass the growth of two- 
dimensional waves and their subsequent secondary instability. Localized disturbances, 
such as those associated with surface roughness or other local conditions generating 
three-dimensionality, typically result in bypass transition by rapidly achieving finite 
amplitudes so that nonlinear effects can enter into play. Disturbances of large enough 
amplitude for nonlinear effects to dominate immediately may of course also cause 
bypass transition. 

When a finite-amplitude localized disturbance breaks down, a turbulent spot is 
created, i.e. a localized region of turbulence in an otherwise laminar flow. Turbulent 
spots have been studied in a number of flow situations (for references see e.g. Riley & 
Gad-el-Hak 1985), among them the boundary-layer and plane channel flows. Direct 
numerical simulations of turbulent spots have been carried out in plane Poiseuille and 
boundary-layer flows (Henningson, Spalart & Kim 1987 and Bullister & Orszag 1987) 
and recently in plane Couette flow (Lundbladh & Johansson 1991). The details of the 
underlying mechanisms for the formation of a turbulent spot are still unclear and one 
aim of the present investigation is to map out a transition scenario that produces a 
turbulent spot through use of high-resolution direct simulations. 

The present study is aimed at investigating possible mechanisms for bypass 
transition from localized disturbances in wall-bounded shear flows with non-inflexional 
mean velocity profiles. Particular attention is paid to the plane Poiseuille flow case. The 
development phases from linear through weakly nonlinear to the subsequent 
breakdown are analysed and treated through use of direct numerical simulation 
techniques as well as by eigenfunction and amplitude expansions. The generality of the 
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observed processes is discussed, and comparisons with simulations for other types of 
localized disturbances and boundary-layer flow are also made. These point in the 
direction of universality of the breakdown processes. 

2. Base flow and initial disturbance 
The major effort in the present investigation will be concentrated on localized 

disturbances in plane Poiseuille flow. In order to show that the mechanisms uncovered 
are not solely related to that flow we will also consider the Blasius boundary layer. In 
Poiseuille flow all quantities are normalized by the centreline velocity (U,,) and the 
channel half-height (h), whereas the corresponding quantities in the boundary layer are 
taken to be the free-stream velocity (U,) and the displacement thickness (&). When 
similar features of the two flows are compared we have chosen to rescale the Poiseuille 
flow results in terms of an equivalent displacement thickness, calculated based on the 
Poiseuille profile in the lower part of the channel. Since that thickness is a third of the 
channel half-height the non-dimensionalized time and space variables for the channel 
results are multiplied by three when a comparison with the boundary layer is made. 

In Poiseuille flow we chose a Reynolds number (R)  of 3000, since our interest is in 
exploring transition mechanisms that are different from exponential growth of TS 
waves. Recall that the critical Reynolds number for the onset of such growth is 5772 
(Orszag 1971). We focus on structures initially consisting of two pairs of counter- 
rotating vortices of the form 

$ = CAY) (x’/l ,)  z’ exp [ - (X’/lJZ - (z’/l,)21, (1 a> 

(1 b) 
(1 c) 

Here ( x ,  y, z )  and (u, v, w) are the streamwise, normal, and spanwise coordinates and 
disturbance velocities, respectively, 1, and I, the streamwise and spanwise lengthscales 
of the disturbance and E its amplitude. The normal dependence was chosen as 

with p = q = 2. 
The horizontal scales of the disturbance in plane Poiseuille flow were chosen as 

1, = 1, = 2 for the results presented here. Other choices were tested and the results were 
found to be rather insensitive to the specific values of 1, and 1,. Three different 
amplitudes were used in the channel flow simulations. For small, moderate and large 
amplitudes E was chosen as 0.0001, 0.0699 and 0.1398, corresponding to a maximum 
initial normal velocity amplitude of 0.000043, 0.03 and 0.06. 

The angle 8 of the disturbance was used as a parameter enabling the initial energy 
to be distributed in different regions of wavenumber space. Note that when the 
disturbance is rotated in physical space around the y-axis, the energy spectrum is 
rotated by the same angle around the origin in wavenumber space. The initial 
disturbance can be seen in figure 1. 

To investigate the sensitivity of the growth mechanisms to the specifics of the initial 
disturbance a qualitatively different initial disturbance was studied. An initial velocity 
field lacking normal vorticity was achieved by an axisymmetric disturbance. 

(u, v ,  w)  = (- @y sin 8, $.,., - $y cos 8), 
(x’, z’) = ( x  cos 0 - z  sin 8, x sin 8 + z cos 0). 

fTY) = (1  + Y F U  - Y Y ,  (2) 

9 = + = = ( y >  r2 e-(r/z)2, (3 a) 
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FIGURE 1. Initial normal velocity with F = 0.0001. (a) y =-0.56, 6 = 20", contour spacing 2.0 x 
(b) Power spectrum integrated in the normal direction for 6' = 0, contour spacing 1 decade. (c) z = 0, 
0 = 0, contour spacing 5.0 x 

wherefly) is taken as in (2) withp = 2 and q = 5 ,  r2 = x 2 + y 2  and 1 = 2. Note that this 
disturbance has its highest amplitudes at the bottom of the channel and introduces 
both symmetries in the normal direction. This disturbance was run with two different 
amplitudes, e = 0.0138 and 0.0276. They were matched such that the energy contained 
in them was the same as in the moderate- and large-amplitude cases above. This gave 
a maximum of the initial normal velocity which was slightly lower than for the 
corresponding counter-rotating vortex disturbance. 

In boundary-layer flow we use the disturbance (1) with 

and the lengthscales 1, = 5 ,  1, = 1.2, 1, = 6, i.e. the same values as in Breuer & 
Haritonidis (1990) and Breuer & Landahl (1990). The Reynolds number chosen, 950, 
was also the same as in their investigation. For small, moderate and large amplitudes 
e was chosen as 0.001, 0.2 and 0.7, corresponding to maximum initial normal velocity 
amplitude of approximately 0.00003, 0.006 and 0.02. 

The type of disturbance described by (1) has been used earlier in studies of transition 
starting with localized disturbances. Henningson (1988) used it in an inviscid model for 
the channel flow problem and Breuer & Landahl(l990) studied this type of disturbance 
numerically in an investigation of finite-amplitude effects in the boundary layer. It has 
also been found to correspond to experimentally induced perturbations caused by the 
motion of a membrane at the wall (Breuer & Haritonidis 1990). In the experiment the 
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membrane moved up and down once, after which it was kept flush with the wall 
surface. In these earlier investigations the vortices were aligned with the mean flow 
direction. The new effects caused by varying the angle 8 have not previously been 
studied. 

3. Numerical simulation method 
In the following sections numerical simulation results will be presented, where a 

spectral method is used to solve the Navier-Stokes equations, with Fourier 
representation in the streamwise and spanwise directions, and Chebyshev polynomials 
in the wall-normal direction. The nonlinear terms are treated pseudo-spectrally using 
FFTs, in a manner similar to that of Kim, Moin & Moser (1987). Although, here, 
instead of the variables themselves, their second-derivatives are expanded in Chebyshev 
series (Greengard 1988). This results in better numerical accuracy since the need for the 
evaluation of ill-conditioned Chebyshev derivatives is virtually eliminated. The time 
advancement used was a third-order Runge-Kutta method for the nonlinear terms and 
a second-order Crank-Nicholson method for the linear terms, with a time step 
dynamically kept at 90% of the theoretical CFL limit. Aliasing errors from the 
evaluation of the nonlinear terms were removed by the :-rule when the horizontal FFTs 
were calculated. The complete numerical method for the channel flow geometry is 
described in Lundbladh, Henningson & Johansson (1992). The code has previously 
been used in the studies by Henningson et al. (1990) and Lundbladh & Johansson 
(199 1). 

The boundary-layer computations were carried out with a code based on the same 
numerical methods as for Poiseuille flow. The domain was truncated in the wall normal 
direction well out in the constant-velocity region. At that outer boundary a free-stream 
boundary condition derived from an explicit solution of the potential flow equations 
in the free stream was used (see Malik, Zang & Hussaini 1985). The boundary layer was 
represented as a temporally growing parallel flow by application of a weak volume 
force which retained a Blasius velocity profile for the undisturbed flow. 

Two types of numerical truncation errors are introduced in these computations, one 
from the limited spatial resolution and one from the periodic boundary conditions 
enforced on a finite computational box. For small- and moderate-amplitude 
disturbances both the box size and the resolution were systematically varied to show 
that all results presented below are accurate, even in details, to the precision of the 
graphics used. In table 1 the parameters used for the main simulation cases are 
reproduced. For initial disturbances with spanwise symmetry the conservation of this 
symmetry by the Navier-Stokes equations was made use of in order to reduce the 
number of computational modes. 

In Poiseuille flow the large-amplitude disturbance was followed up to and through 
the breakdown stage, which required a substantially higher resolution than the 
moderate-amplitude simulations. In table 1 two simulations of this disturbance are 
listed. When the second run, with a higher spatial resolution but a smaller box, was 
compared to the first one it showed no significant differences in the breakdown 
features, demonstrating that both types of truncation errors were negligible. A number 
of simulations with various lower resolutions showed that only the two higher 
resolutions could be considered converged for all stages of the transition process. At 
lower resolutions spurious numerical instabilities appear with a character resembling 
that of a physical secondary instability. 

As a measure of the difficulty involved in resolving all scales through the breakdown 
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Flow 
Poiseuille 
Poiseuille 
Poiseuille 
Poiseuille 
Poiseuille 
Poiseuille 
boundary layer 
boundary layer 
boundary layer 

Disturbance 
vortex pairs 
vortex pairs 
vortex pairs 
vortex pairs 
axisymmetric 
axisymmetric 
vortex pairs 
vortex pairs 
vortex pairs 

Amplitude 
small 
moderate 
large 
large 
moderate 
large 
small 
moderate 
large 

Computational 
domain 

48 x 2  x 24 
48 x 2 x 24 
53 x 2 x 27 
33 x 2 x 13 
48 x 2 x 24 
3 3 x 2 ~ 1 3  

100 x 8 x 50 
100 x 8 x 50 
80 x 8 x 32 

Number of modes 
96x 65x 96 
96x  65x192 

512x 97x512 
4 0 0 x 1 2 1 ~ 3 2 0  
96x  65x 192 

320x 97x256 
S O X  65x  80 
S O X  65x 80 

2 5 6 x 1 0 9 ~ 1 9 2  

TABLE 1. Parameters for the main simulation cases. For initial disturbances with spanwise symmetry 
the number of computational modes in the spanwise direction was half of that indicated. Note that 
each item may represent a number of individual simulations. For dealiasing purposes the number of 
gridpoints was 3/2 times the number of modes in each of the horizontal directions. 

stages, we mention that the total amount of computer time spent in this study was 
about 600 CRAY CPU hours. The largest individual run took 150 CPU hours and 
100 MWords of memory. It was run in parallel on four CRAY-2 processors. 

In the later stages when a small turbulent spot is formed a wall scaling can be used 
to assess the effective resolution. With an estimated friction velocity from the turbulent 
part, Ax+ and Az+ are roughly 11 and 5 for the best resolved computation 
(corresponding to 7 and 3.5 on the dealiazed grid). This slightly better than in the Kim 
et al. (1987) turbulent channel flow simulation. 

4. Theoretical considerations 
In order to be able to elucidate linear and nonlinear mechanisms in the growth, 

spreading and breakdown of localized disturbances we briefly discuss the theoretical 
background. The vector-mode notation of Henningson & Schmid (1992) for the 
normal velocity-normal vorticity formulation of the disturbance equations is 
particularly convenient for the purposes of the present investigation and will be 
adopted here. Other approaches have been used by several previous investigators 
(references additional to those given below can be found in the article by Henningson 
& Schmid). 

4.1. Governing equations 
We start with the complete disturbance equations in normal velocity-normal vorticity 
form. We will assume that the dependent variables can be expanded in Fourier series 
in the horizontal directions. Although this assumes periodicity, a localized disturbance 
can still be considered as long as the period is large enough. This formulation also 
conforms to the representation of the disturbance used in the numerical simulation 
program. For the streamwise and spanwise wavenumber combination (arn, p,) the 
complete disturbance equations can be written 

where 
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where f,, is a Fourier coefficient of the normal vorticity. Lo, and L,, are related to 
the 0s and SQ operators, respectively, and are defined 

(6 a) 

(6 b)  

Lo, = - ia, U(D2 - kkn)  + ia, U” + (D2 - kkJ2 /R ,  

L,, = ia, U -  (D2 - k k n ) / R .  

N is the nonlinear right hand side, kkn = ak+P; and U(y)  is the mean flow in the 
streamwise direction. The double convolution sum represents the nonlinear triad 
interactions. For an explicit form of the nonlinear operator in (5)  see Henningson & 
Schmid (1992).f 

From these equations, together with the initial and boundary conditions 

6 = fi&, Y ,  PI, i = f o ( a ,  Y ,  PI, t = 0, (7) 

and O = D f i = i = O ,  ~ = + l  (8) 

the complete disturbance development may be calculated. The horizontal velocities can 
then be obtained from 

which is derived using the continuity equation and the definition of the normal 
vorticity. 

For a localized disturbance the rate of growth or decay of the total disturbance 
energy is an important measure of the stability of the flow. It is here illustrative to write 
the kinetic energy for a specific Fourier component, Em,, in the form 

where superscript H denotes complex conjugate transpose. This identity is readily 
derived by use of Parseval’s relation and (9a)  and (9b)  above (see also Gustavsson 
1986). The total disturbance energy is obtained if the above expression is summed over 
all excited wavenumbers. 

In the assessment of the role of linear and nonlinear processes in the finite-amplitude 
development of a disturbance it is useful to consider the energy transfer into a 
particular Fourier mode. Using (3, (8) and (10) that can be written 

1 

Icft-m 
l+j=n 

d ~ ~ n ~ m n d Y +  c J - l ~ ~ n ~ ~ i , t , ~ t j ) d ~ ) ,  (11) 

where Re signifies the real part of the subsequent complex expression. The first integral 
represents the rate of energy transfer due to the linear term and the second that due to 
the nonlinear wave triad interactions. When the total disturbance energy is calculated 
by summing ( 1  1 )  over all wavenumbers it is interesting to note that the nonlinear terms 
drop out. This follows from the Reynolds-Orr equation (see Drazin & Reid 1981, p. 

dt mn 

t Note that for wavenumber zero (a = /3 = 0) both the normal velocity and normal vorticity are 
zero, and that do, instead contains the streamwise and spanwise velocities. The governing operators 
for this case also require changes. 
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425), that governs the rate of change of the total disturbance energy, and can easily be 
understood from the fact that the nonlinear terms in the Navier-Stokes equations and 
corresponding terms in the energy equation can be written as a divergence. In the 
derivation of the Reynolds-Orr equation the base flow is taken as an exact solution to 
the Navier-Stokes equations. In the situation studied here we are left with 

This shows that the relative change of the total energy is independent of the 
disturbance amplitude, i.e. at every instant the quantity (1/E) (dE/dt) is unaffected by 
a rescaling of the amplitude. Hence, if all infinitesimal disturbances exhibit a 
monotonic decay of the total energy this will also be the case for finite amplitudes. 
Conversely, if any finite-amplitude disturbance exhibits total energy growth there must 
exist an instantaneously growing infinitesimal disturbance. Actually, the latter can 
readily be constructed by rescaling the finite-amplitude disturbance. 

Despite the necessity of linear mechanisms for the existence of total energy growth 
and transition, nonlinear interactions affect the evolution of the disturbance and may 
therefore indirectly contribute to the energy growth. An important aspect of the 
nonlinear interactions is to redistribute the energy in wavenumber space to regions of 
large growth rate. 

4.2. Eigenfunction expansions and transient growth 
For small-amplitude disturbances the nonlinear terms of (5 )  can be neglected and the 
solution to the equation can be expressed as an expansion in the eigenmodes of the 
linear part of system. Once exponential time dependence has been assumed, the linear 
system can be written (if we drop the subscripts mn) 

(Lo, 0 )(ij) ~ -1w . (-D:+k2 0)(5) = 0. 
ipUf L,, 1 r ”  

This equation has the same boundary conditions as (5) .  The eigenmodes of this system 
consist of both the 0s and SQ modes. The part associated with the 0s eigenvalues 
consists of a normal velocity component (F) which is a solution to the first component 
of (13) and a forced particular solution for the normal vorticity (ijp). The forcing results 
from the off-diagonal term ipU‘. The part associated with the SQ eigenvalues consists 
solely of a homogeneous solution (q) of the second component of (13). The 
eigenfunction expansion may, hence, be written 

Here wt and aj are 0s and SQ eigenvalues, respectively. The expansion coefficients are 
determined from the initial conditions using the eigenfunctions of the system adjoint 
to (1 3) and the appropriate bi-orthogonality conditions. The expansion coefficients are 
(see Henningson & Schmid 1992) 

Kt = JIl el*(  - D2 + k2) 6, dy 

Bj = I:, [fi;+*( - D2 + k2) 6, + f$* to] dy. 
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Here v"+ is a solution to the adjoint 0s equation, ij+ is a solution to the adjoint SQ 
equation and Cp+ is the associated forced adjoint normal velocity. 

The potential for algebraic or transient growth of the solution can be seen directly 
from (14). Suppose that we expand an initial condition with zero normal vorticity. This 
will excite a number of 0s modes, in order to represent the normal velocity. Each 0s 
mode has an associated particular normal vorticity (Sf), which now needs to be 
cancelled out by an appropriate combination of SQ modes. Thus, both 0s and SQ 
modes are excited by an initial condition of zero normal vorticity. This has important 
implications for the disturbance development. As the perturbation evolves downstream 
each part propagates with the characteristics given by its eigenvalue. Since the phase 
speeds and decay rates are different the modes will propagate apart and the 
cancellation that occurred initially will not persist. Thus the disturbance will experience 
transient growth in the normal vorticity component. It should be noted that the 
particular normal vorticity in an 0s mode is typically much larger than the normal 
velocity, thus giving rise to the cancellation effects even if the disturbance has a 
moderate initial normal vorticity. Both the particular normal vorticity and the 
resulting transient growth is largest for Fourier components with small streamwise 
wavenumbers. 

The cancellation effects described above are only possible because of the non- 
orthogonality of the eigenmodes and are mathematically a result of the non-normality 
of the operators governing the above systems (an operator is normal if it commutes 
with its adjoint). Both orthogonality and adjoint are defined in the standard manner 
using the inner product associated with the energy norm (10). Solutions to problems 
governed by non-normal operators may only show the behaviour predicted by the 
associated eigenvalues as t + co. Initially they are not necessarily mode-like and have 
the possibility of large transient growth although all eigenvalues predict decay. This 
behaviour has been seen in a number of different applications, including the analysis 
of the stability of numerical discretization schemes, the analysis of iterative methods in 
linear algebra and in the area of hydrodynamic stability. Some recent work is discussed 
in Reddy (1991) and Trefethen (1991). Hydrodynamic stability results can also be 
found in Farrell (1988), Butler & Farrell (1992) and Reddy, Schmid & Henningson 
(1993). Another related work is that of Gustavsson (1991), who uses somewhat 
different techniques. 

The transient growth can also be described as forcing of the normal vorticity by the 
normal velocity, represented by the off-diagonal term ipU' in the first matrix operator 
of (13). This term represents tilting of the mean spanwise vorticity such that normal 
perturbation vorticity is created. 

The transient growth is largest for small streamwise wavenumbers and persist also 
in the inviscid case. To see this we will rewrite the normal vorticity part of the 
eigenfunction expansion. We expand the particular normal vorticity and the particular 
adjoint normal velocity in modes of their respective homogeneous operators. If these 
expansions are introduced into the second component of (14) and into (15b) we find 

In the limit of small aR the dependence of the 0s and SQ eigenvalues on the Reynolds 
number can be found explicitly. If we use the expansion from Drazin & Reid (1981, 
p. 159) we can write the eigenvalues as 

wl = -i,ulu,/R+O(a), gj = -iv,/R+O(a) (174 b) 
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where pz and vi are real, positive and independent of Reynolds number. If these 
expressions are used in (16) and the result is Taylor expanded for small t / R  we have 

By a summation of the expansions the leading-order term can be written 

tj = (fj,-ipU'fl, t )  [1+ O(at, t /R)] ,  

which clearly shows that there may be substantial algebraic growth for p + 0 if at < 1 
and t / R  < 1. 

For viscous flow with Reynolds numbers in the range considered presently the 
condition t / R  < 1 is fulfilled for moderate times. The additional condition at 4 1, 
however, shows that there has to be energy in low streamwise wavenumbers for 
substantial growth to occur. If the latter condition is the limiting factor we should 
expect to see energy growth for times such that t 4 l/a*, if a significant amount of 
energy is contained in streamwise wavenumbers on the order of a* or less. 

For the idealized case where we consider a = 0 equation (18) clearly shows that the 
maximum amplitude is of order R and occurs for times of order R. This behaviour was 
found by Gustavsson (1991) in a detailed investigation of growth for the 01 = 0 case. 
This behaviour is, however, of somewhat limited importance for the localized 
disturbances considered here since only a small fraction of the energy is contained in 
wavenumbers satisfying aR < 1. In the numerical investigations it was also found that 
the maximum amplitude typically is a small fraction of R. 

The result in (19) may also be interpreted as the inviscid limit if we let R+ co. This 
limit shows that there is algebraic growth for all times for inviscid disturbances which 
are independent of the streamwise direction. This inviscid algebraic instability was first 
found by Ellingsen & Palm (1975) who derived an expression equivalent to (19). Thus 
(1 8) shows that the growth experienced by zero streamwise wavenumber components 
is essentially caused by an inviscid mechanism whereas the subsequent decay is a result 
of viscous effects. Landahl(l975) termed the mechanism of growth due to the U'v term 
lift-up since it can be directly related to the velocity defect created when a fluid particle 
is lifted up in the direction normal to the wall while keeping its horizontal momentum 
constant. Landahl (1980) also showed that although the inviscid instability only 
operates for zero streamwise wavenumbers it still causes unbounded energy growth for 
localized disturbances if wavenumbers with a = 0 are excited. 

5. Linear evolution 
5.1. Direct numerical simulation results 

In order to ensure negligible nonlinear effects over the time period studied the 
amplitude parameter of the initial disturbance was chosen as e = 0.0001 in the 
numerical simulation. The linear evolution of the normal velocity field for 8 = 0 is seen 
in figure 2(a) to be associated with the dispersion of a wave packet. Owing to the 
dispersive effects and the damping of the normal modes the amplitudes decrease by 
about one order of magnitude between t = 10 and 40. The wave packet structure can 



Bypass transition in wall-bounded shear flows 181 

10 

5 -  

z 0 -  

-5  

-10 

10 1 I "  " ' I " ' "  

- 

- 

X x X 

I 

L 
10 15 20 25 30 35 

X 

FXGURE 2. Small-amplitude disturbance at y = -0.56, B = 0, t = 10,20,30,40: (a) normal velocity, 
(b)  streamwise velocity. Contour spacing: v ,  1.0 x lo-&; u, 2.0 x l O P .  

0 

Y 
- 1  n -." 

0 5 10 15 20 25 
x 

FIGURE 3. Streamwise velocity of a small-amplitude disturbance at z = 0, t = 25, 0 = 0. 
Contour spacing 2.0 x 

also be observed in the associated streamwise velocity (figure 2b), although the main 
flow feature is now a strong streamwise shear layer that has developed around the 
symmetry plane (figure 3). Note that the streamwise velocity has an amplitude which 
is about one order of magnitude larger than the normal velocity, although no 
streamwise velocity was present initially. This growth is due to the three-dimensional 
linear mechanism discussed in $4.2 and was also found in the boundary-layer 
experiments by Breuer & Haritonidis (1990) who investigated the development of the 
shear layer in detail. The shear layer in figure 3 can be compared with figure 4 of Breuer 
& Haritonidis. We compare the flow features at a time which is equivalent if scaled with 
the maximum streamwise velocity and the displacement thickness. This scaling is 
motivated by the inviscid nature of the growth mechanism. The comparison shows that 
all the qualitative features are the same in the two cases. 

If the initial disturbance is rotated about the y-axis (see figure 1) new features can 
be seen in the development (figure 4). The streamwise amplitude of the disturbance 
grows more rapidly, and at t = 40 the disturbance is considerably more streaky. In 
contrast to the 8 = 0 simulation the spanwise shear now dominates.The increase in 
amplitude growth with 8 can be seen in figure 5(a). The contrast between the rapid 
algebraic growth for 8 = 45" and the decay for 8 = 0 is conspicuous. The results 
confirm that the maximum growth occurs when the energy of the initial disturbance is 
centred around the algebraically growing modes along the spanwise wavenumber axis. 
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FIGURE 4. Small-amplitude disturbance at y = -0.56, 6' = 20, t = 10,20,30,40: (a) normal 
velocity, (b) streamwise velocity. Contour spacing: v, 1.0 x u, 2.0 x 

Recall that turning the disturbance 45" in physical space also turns the spectrum the 
same amount in wavenumber space, thus centring a major part of the energy around 
a = 0. 

One should remember that although the energy grows for 0 = 45" over the time 
period studied here, eventually the exponential damping will dominate. The maximum 
in energy is, however, shifted to larger times, and its magnitude becomes larger with 
increasing initial disturbance energy in low streamwise wavenumbers. This effect 
increases with Reynolds number so that inviscid disturbances with energy along the 
spanwise wavenumber axis consequently grow for all times (see (19)). 

The energy growth is associated with the generation of normal vorticity through 
forcing by the normal velocity. This part of the disturbance energy (i.e. (l/k2)i7j*) is 
initially the same for all angles 0, but grows more rapidly with increasing angle. It also 
constitutes practically all of the energy after relatively short times (figure 5 b). For 
instance, at t = 15 for 0 = 0, about 76 YO of the total energy resides in the u-component, 
whereas, in terms of the alternative energy decomposition, about 96 YO can be ascribed 
to the normal-vorticity-related part. The distribution of the energy among the 
components of the alternative decomposition is essentially the same for the cases with 
0 * 0 .  

5.2.  Eigen function expansion results 
The results from the simulations can be reproduced using the eigenfunction expansion. 
We use the expansion (14) where the coefficients are calculated using expressions (1 5 a) 
and (1 5 b). Note that we have to include a number of streamwise and spanwise Fourier 
components to capture the streamwise and spanwise variation of the localized 
disturbance. For each such wavenumber a number of normal modes have to be used. 

Figure 6 shows the time evolution of the r.m.s. values of the normal velocity and the 
normal vorticity for the localized disturbance. One, four, ten, fifteen and twenty of the 
least stable modes are used in the eigenfunction approximations. Four modes capture 
the behaviour of the normal velocity after t = 20 whereas one mode is sufficient after 
t = 30. The cases with a larger number of modes fall on top of the data obtained from 
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the numerical simulation. The convergence of the expansion for the normal vorticity 
is not as regular. We have to increase the number of modes to a total of 40 (20 0s and 
20 SQ modes) to be able to capture the initial transient growth phase. 

There is a large initial cancellation between non-orthogonal modes causing the 
transient growth. After the peak there is mode-like behaviour as the least-stable 
eigenvalues govern the decay. The fact that the expansions with insufficient number of 
modes overshoots initially for the normal vorticity component is again a result of the 
non-orthogonality of the modes. If the modes were orthogonal all partial sums would 
have a smaller energy than the exact solution. 

We will consider the mode excitation in detail for a = p = 1.0472, which is a 
wavenumber located approximately at the peak of the initial normal vorticity in 
wavenumber space. Figure 7 shows the 0s and SQ eigenvalues for that wavenumber 
combination and the initial excitation of these modes is given in table 2. The expansion 
coefficients in the table are normalized such that a mode with coefficient unity would 
have unit energy if the mode contained all of the initial energy of the disturbance. The 
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FIGURE 6. Time evolution of the integrated r.m.s. values for (a) the normal velocity and (b) the normal 
vorticity. Solid curves represents the numerical simulations, while the dashed, dotted, chain-dashed 
and chain-dotted curves represent the eigenfunction expansions using L = J = 1, 4, 10 and 15 
respectively. The curves €or L = J = 20 are also included but cannot be distinguished from the 
numerical simulation results. 

modes are labelled according to the classification used by Mack (1976). The 
cancellation effects can be clearly seen in the large expansion coefficients associated 
with the higher modes. Note that the initial energy is smaller than even the energy of 
the least-stable OS-mode for this wavenumber combination. If the modes were 
orthogonal the sum of the squares of the expansion coefficients shown in table 2 would 
equal unity, i.e. they would add up to the total energy in the associated Fourier 
component. That sum is here orders of magnitude larger than unity. The largest 
expansion coefficients for the 0s and SQ modes are found in the forks of the A, P and 
S branches of the respective eigenvalue spectra. The modes in this region depart most 
from orthogonality, which implies that they have the largest potential for cancellation 
effects. 

The departure from orthogonality is here naturally measured in the inner product 
associated with the energy norm. It is also remarkable that modes with damping rates 
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FIGURE 7. (a) Orr-Sommerfeld and (b)  Squire eigenvalues for plane Poiseuille flow 

with a = p = 1.0472 and R = 3000. 

Mode lKcl/@/7 Type lBjl/@/7 Type 
1 1.321 A1 0.654 PI 
2 0.056 P1 1.466 P2 
3 0.182 P2 0.447 A1 
4 0.662 P3 3.418 P3 
5 6.470 A3 8.022 P4 
6 2.529 P4 2.350 A2 
7 8.883 P5 18.702 P5 
8 0.365 A2 6.055 A3 
9 40.567 A5 40.056 P6 

10 3.341 A4 35.012 A4 
11 3.892 A6 25.118 A5 
12 1.223 Sl 3.025 51 
13 1.082 s2  0.819 52 
14 0.603 s 3  0.416 53 
15 0.399 s4 0.291 54 
16 0.270 s5 0.200 55 
17 0.180 S6 0.132 56 
18 0.119 s7 0.085 57 
19 0.079 S8 0.054 58 
20 0.054 s9 0.035 59 

TABLE 2. Absolute value of the expansion coefficients for the 0s and SQ modes at a = p = 1.0472 and 
R = 3000. The coefficients are normalized with the square root of the initial energy in this 
wavenumber combination @a>. The eigenfunctions are normalized to each have unit energy and they 
are numbered in order of decreasing imaginary part of their respective eigenvalue. Each mode is also 
classified according to Mack (1976). 

lower that -0.8 are needed to capture the first few time units of the disturbance 
development. Only sixteen modes are shown in figure 7 whereas twenty modes were 
needed for a converged initial normal vorticity. Finally, the reason that the transient 
growth phase of the disturbance development is not mode-like is clearly illustrated by 
the mode excitation example. The y-dependence of any single mode does not give any 
information about the y-dependence of the early stages of the disturbance. Instead it 

7 FLM 250 
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FIGURE 8. Normal velocity at y = -0.56 and t = 30 of the localized disturbance with 0 = 0. (a) From 
eigenfunction expansion using A1 -modes only. (b)  Numerical simulation results. Contour spacing 
5.0 x 10-7. 

is determined by a sum of the shapes of the modes with the largest coefficients. In that 
sum large cancellations occur. It is only after the peak when only a few of the least 
stable modes are important that the behaviour is similar to what one usually associates 
with the propagation of eigenmodes. 

Another issue of interest is the type of behaviour associated with the different 0s 
and S Q  modes. As an example we will investigate the most important 0s modes excited 
at t = 30. The least-stable mode is labelled A1 in figure 7(a). The mode is also referred 
to as a TS wave. Figure 8(a) shows the velocity associated with the Al-modes. At this 
time they capture all of the qualitative effects of the normal velocity evolution, as can 
be seen when figure 8 (a) is compared to the results of the numerical simulation, figure 
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8 (b). The reason the agreement is good without including the modes from the P branch 
of the 0s spectrum is that the expansion coefficients for the least-damped P modes are 
about an order of magnitude lower than that those for the A1 modes (see table 2). If 
those modes were substantially excited initially, one would be able to see their effects 
in figure 8(a), since they have only slightly larger damping rates than the A1 mode. 
Thus we find that one may, with the help of the eigenfunction expansion, predict the 
development of the normal velocity for this disturbance with a small number of 0s 
modes. For the normal vorticity component one finds that more modes are in general 
needed to describe the development (compare figures 6 a  and 6b) .  

6. Initial nonlinear evolution 
6.1. Direct numerical simulation results 

In the evolution of the moderate-amplitude disturbances the maximum initial v- 
velocity was chosen as 0.03 (corresponding to 6 = 0.0699). In general the development 
of these disturbances exhibits large differences when compared to those of the small- 
amplitude case. The normal velocity field for @ = 0 is seen in figure 9 to be dominated 
by narrow elongated patterns. The wave packet seen in the linear evolution is also 
present, but plays a minor role since its amplitude is much smaller than the much more 
localized and faster moving central part of the disturbance. The streaks are seen to be 
associated with sharp spanwise gradients. A fast moving streaky pattern in front of a 
wave packet was also found by Chambers & Thomas (1983) in their experimental 
investigation of the initial stages of a turbulent spot in a Blasius boundary layer. 
Klingmann (1992) also observed the formation of elongated structures associated with 
strong spanwise shear in the early stages of spot formation in plane Poiseuille flow. 

The signs of nonlinearity are first seen in the normal velocity, and later in the 
horizontal ones through forcing by the v-component. Neither the normal nor the 
streamwise velocity decay in the moderate-amplitude case, in contrast to the linear 
case. When the nonlinearity sets in the disturbance development becomes dominated 
by the large spanwise shear associated with the formation of streaky structures. 

The differences between the linear and nonlinear development of the disturbance 
with @ = 20" are not as pronounced as for @ = 0 (figures 4 and 10). The streamwise 
velocity, for example, grows at similar rates in the nonlinear and linear cases. There are 
smaller spanwise scales introduced in the central part of the nonlinear disturbance for 
this value of 0 as well, although they are not as pronounced as for the 8 = 0 
disturbance. 

In figure 11 (a)  it is seen that the energy growth in the moderate-amplitude case does 
not show a large variation with 8. The growth for 8 = 0 is dramatically increased as 
compared to the linear case, whereas the growth for 8 = 4.5" has decreased slightly. The 
nonlinear effects dominate after about t = 10 for the chosen disturbance. At that time 
the energy for 0 = 0 had reached a maximum in the linear case (figure 5 a), whereas here 
it continues to increase (figure 1 1  a). Figure 1 1  (b)  shows the energy decomposition for 
the moderate-amplitude disturbance, and reveals that the Dv term has grown 
somewhat at the expense of the normal vorticity in comparison with the linear case 
(figure 5 b). This results from the stronger normal gradients for the stronger disturbance 
as compared to the linear case. However, the decomposition in the two cases follows 
the same general trend, i.e. that the normal vorticity is responsible for the dominating 
part of the energy. 

1-2 
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6.2. A numerical amplitude expansion 
In order to study the onset of nonlinearity it is illustrative to analyse the numerical 
results in terms of an amplitude expansion with the aim of isolating the linear, 
quadratic and cubic parts of the disturbance. We write the following expansion for the 
velocity field: 

(20) 
n 

U(€) = c Uk Ek + 0(P+l), 
j = O  
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where u may represent any of the velocity or vorticity components and where the 
dependence of x, y, z, t has not been explicitly indicated. In the above expansion we can 
set uo = 0 since that represents the parabolic mean flow. The rest of the uk components 
can be found by evaluating ~ ( e )  for various values of E and then inverting the expansion 
(ZO), neglecting the error term. Assuming that we have used three different values of E 

we may, at a given time, calculate u,, u2, ug as solutions to the following linear system 

In our case we chose el = 0.0005, c2 = 0.001 and e3 = 0.002 in the disturbance (1) with 
0 = 0. This system has to be solved for each combination of x, y, z,  t of interest. 

Figure 1 2 ( a c )  shows the linear, quadratic and cubic part of the normal velocity in 
the (x, y)-symmetry plane. The nonlinear parts can be seen to be concentrated to a 
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FIGURE 12. Normal velocity at t = 15 and z = 0. (a) Linear part, contour spacing 0.02. (b) Quadratic 
part, contour spacing 0.2. (c) Cubic part, contour spacing 2.0. (d) Combination of the linear, 
quadratic and cubic parts. E = 0.0699 with contour spacing 0.002. (e)  Numerical simulation with 
B = 0.0699, contour spacing 0.002. 

smaller region as well as to have their largest amplitudes closer to the walls. When the 
initial normal velocity is symmetric in y it is easily verified that the quadratic part will 
be antisymmetric and the cubic symmetric. Although these symmetries have not been 
imposed in the calculation of the expansion coefficients they are clearly seen in figure 
12(u-c), verifying that the rounding and truncation errors have not corrupted the 
decomposition. Figure 12(d, e) compares the sum of the first three terms of the 
amplitude expansion using e = 0.0699 with the results from the numerical simulation 
with that amplitude. The agreement is seen to be very good, thus showing that the 
expansion is valid for substantially higher amplitudes than that used in the calculation 
of the individual terms. This is further substantiated by the results shown in figure 13, 
where it is seen that the expansion truncated at third order captures all of the energy 



Bypass transition in wall-bounded shear j o w s  

I I I 

1 0  - 

A 0 8 -  - 

- - - -____ -_  -_  - -__  - _  ._ 

0 

II - 0.6 
; 

ak 

2 0 4 -  - 
a 

u - 

.-. 

0 2  - - 

I I I 

191 

0 1 2 3 0 1 2 3 0 1 2 3 
a a a 

FIGURE 14. Energy spectra at t = 15 obtained from the amplitude expansion. (a) Linear part. 
(b) Quadratic part. (c)  Cubic part. Contour spacing 1 decade. 

in the normal velocity component up to t % 20, whereas lower-order truncations 
deviate from the exact solution at earlier times. The convergence for the horizontal 
velocity components is not as regular as for the normal velocity, although at t = 15 the 
cubic truncation is sufficient. 

The nature of the nonlinear parts is further illustrated in figure 14 where the energy 
spectra of the first three terms of the expansion are plotted. The quadratic part of the 
spectrum has peaks along the streamwise and spanwise wavenumber axes, and the 
cubic term continues the cascade of energy, to smaller spanwise scales, close to the p- 
axis. Figure 15 shows the three first terms of the streamwise velocity in a (x, z)-plane 
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FIGURE 16. Energy transfer into Fourier component (0,2.36) for the disturbance with 0 = 0. (a) Up 
to t = 20. (b) Enlargement of the initial transfer. -, Transfer due to nonlinear terms; ----, 
transfer due to the linear term; . . . . . . , total transfer. 

obtained from the expansion. The linear part is dominated by the wave packet and the 
central shear layer, whereas the quadratic part shows the typical streaky structures 
associated with energy along the spanwise wavenumber axis. The cubic term shows a 
reinforcement of the shear layer as well as the introduction of smaller spatial scales. 

The initial finite-amplitude development can be understood if the nonlinear term of 
the Navier-Stokes equation is considered. In Fourier space it results in pairwise 
wavenumber summations seen in the convolution sums in (5). This implies that an 
initial energy distribution with peaks at ( f a, f p) in the spectral plane will give rise to 
new peaks at ( f 2a, f 2p), ( f 2a, 0), (0, & 2p) and (0,O). The last is a modification of 
the mean profile and the first tends to vanish due to the large values of the exponential 
damping in that region of wavenumber space. Of the remaining two peaks, the one 
with zero streamwise wavenumber dominated for the present disturbance. This 
explains the tendency for formation of elongated patterns with roughly half the 
wavelength of the initial disturbance. Given the dominance of the zero streamwise 
wavenumber, first- and higher-order nonlinear interactions tend to shift energy up the 
p-axis to (0, +2p) and further to (fa, f3/3), (0, f4p) etc. We will refer to this 
preferred propagation of energy up the spanwise wavenumber axis as the /3-cascade. 

It may be tempting to attribute the growth of the zero streamwise wavenumber 
components to the linear effects described in previous sections. One has to remember, 
however, that these modes are now a solution to a driven problem where the role of 
the linear mechanism is not obvious. In order to isolate the mechanism behind the 
rapid growth of these modes the contributions from the linear and nonlinear terms to 
the energy transfer into the Fourier component (0,2.36) was calculated using ( 1  1). That 
component is located at the peak of the nonlinearly induced maximum seen in figure 
14(b). The result is plotted in figure 16. It is clearly seen that it is the linear mechanism 
that totally dominates the positive energy transfer. The major effect of the nonlinear 
terms is to remove a substantial amount of the energy supplied by the linear 
mechanism. Since this Fourier component has no energy initially for the 8 = 0 
disturbance it needs to be nonlinearly excited. An enlargement of the initial transfer 
shows that this is indeed the case (figure 16b). Thus after a small nonlinear excitation 
all of the energy supplied to the flow for this Fourier component is due to the linear 
mechanism. One should note that the above reasoning is valid also for small non-zero 
streamwise wavenumbers (see (19) and the subsequent discussion). 
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FIGURE 17. Large-amplitude disturbance at t = 40 and y = -0.56. Normal velocity, contour 
spacing 0.02. 

7. Strong nonlinearity and breakdown to turbulence 
In order to facilitate the study of breakdown to turbulence from localized 

disturbances the initial amplitude was raised to 6 YO (corresponding to 6 = 0.1399). By 
this increase in amplitude the development reaches the stage of a small turbulent spot 
after a relatively short time ( t  x 60). 

Before we consider the breakdown we will briefly compare the flow features of the 
6 Yo disturbance with that of the previously discussed finite-amplitude disturbance. The 
normal velocity at t = 40 (figure 17) shows the same streaky structure as for the lower 
amplitude in figure 9. Note that the region plotted in figure 17 is smaller than that in 
the figures from the lower-amplitude disturbances, so that the wave packet behind the 
streaky part cannot be seen. On closer inspection one finds some significant differences. 
For the lower amplitude the streaky structures are smooth and extend over a 
streamwise length of about 20. For the corresponding higher amplitude they are 
instead broken up into two substructures, one from 15 to 20 and one from 22 to 35. 
In between there is a spanwise shift of the streaks. We here focus on the description of 
the streaky pattern at the rear of the disturbance in the lower half of the channel, since 
the subsequent breakdown was found to originate there. Figure 18 shows the 
streamwise vorticity in the three ( y ,  2)-planes in this region. A prominent feature are 
the strong streamwise vortices situated close to both the upper and lower walls, which 
in turn are associated with inclined vertical shear layers (see figure 19a). At the lower 
wall a twisted vortex pair is found between x = 17 and 20 whereas the main feature 
further downstream is a single strong vortex with the dominating component in the 
streamwise direction. Such a slightly inclined vortex in a shear flow becomes intensified 
by the action of the mean shear. When nonlinear and viscous terms are neglected the 
equation for the streamwise vorticity component (8 becomes 

Dt/Dt = U’(7 - au/az) (22) 
where D/Dt denotes material derivative. 

At t = 40 the breakdown of the streamwise vortex structure is just starting. It can be 
seen as a small kink in the streamwise velocity contours in figure 19(a). In an 
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FIGURE 18. Large-amplitude disturbance at t = 40. Streamwise vorticity at x = 17,20,23. 
Contour spacing 0.25. 

experiment where a velocity component is measured with a fixed probe this will appear 
as a sharp spike in the signal. This is the start of a rollup process, clearly seen at t = 
45 in figure 19(b). The shear layer associated with the vortex rolls up in a manner 
similar to that accompanying the lambda vortex structures in the secondary instability 
process. The initiation of the breakdown is quite local in both space and time, which 
is illustrated by the evolution of the normal velocity between t = 40 and 45. The 
maximum u grows rapidly up to a magnitude of about 0.2 during this period. The 
region with high values of the normal velocity has a length of about one unit, to be 
compared with the vortex structures, which are an order of magnitude longer. 

After the spike stage the flow quickly breaks down and forms a turbulent spot. The 
normal velocity at t = 64.2 can be seen in figure 20. Here the rear part of the 
disturbance already has the forward pointing arrowhead typical of early channel flow 
spots (Alavyoon, Henningson & Alfredsson 1986). Notice that the front part of the 
disturbance has much lower amplitudes than the region which has broken down. This 
faster moving part vanishes as the disturbance propagates forward and turns into a 
fully developed spot. The propagation velocity of the rear laminar-turbulent interface 
was found to be 0.55k0.1, well in accordance with previous experimental and 
numerical findings. See Henningson & Kim (1991) for further details on the Poiseuille 
flow spot. The box size is here too small, however, to follow the disturbance much 
further. 

8. Discussion of the generality of the transition process 
We have described a transition scenario for a particular class of localized 

disturbances in plane Poiseuille flow. An essentially linear mechanism was found to be 
important for the rapid growth of the disturbance both for small and large initial 
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FIGURE 19. Strong disturbance for z = 1.5. (a) Streamwise velocity at t = 40, contour spacing 0.05. 
(b) Streamwise velocity at t = 45, contour spacing 0.05. (c) Normal velocity at t = 40, contour spacing 
0.02. (d) Normal velocity at t = 45, contour spacing 0.02. 
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FIGURE 20. Normal velocity at t = 64.2 and y = -0.56, contour spacing 0.025. 
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amplitudes. The question that naturally arises is whether this represents a scenario that 
is present for other disturbances and flow situations. We will here address the question 
of the generality of this mechanism. First another kind of disturbance, distinctly 
different from that treated in the previous sections, is considered in plane Poiseuille 
flow whereafter localized disturbances in the boundary-layer geometry are discussed. 
We will focus on the generality of the streak formation and the development of the 
strong streamwise vortex structure. The later stages of breakdown require such large 
amounts of computer time that a detailed parameter study and comparison with other 
flow situations are outside the scope of this study. 

8.1. An axisymmetric disturbance in Poiseuille flow 
A disturbance consisting of an axisymmetric vortex given by (3 b) is considered in the 
present section. Axisymmetric disturbances with their symmetry line parallel to the 
normal direction have zero normal vorticity. More importantly, the energy of such 
disturbances in Fourier space has a qualitatively different distribution than the 
disturbances previously considered. It is easy to show that horizontal axisymmetry also 
implies axisymmetry in wavenumber space. The particular disturbance used here has 
a maximum of initial energy at a radius of about k = (a2 +pZ): = 0.8 in Fourier space. 
The energy is zero at the origin and drops rapidly for large values of k .  Thus this 
disturbance has a sizable amount of energy near the spanwise wavenumber axis, while 
the peaks at specific wavenumber combinations associated with the previously used 
disturbances are absent. Finally the disturbance, in contrast to those studied above, 
lacks the symmetry in the normal direction. 

The development of this disturbance exhibits the familiar wave packet structure in 
2) at the rear of the disturbance as well as a streaky structure at the front. Figure 21 
shows the normal and the streamwise velocity at t = 30 for the moderate initial 
amplitude ( E  = 0.0138). The streamwise velocity is also developing a streaky structure. 
The energy has grown by a factor of approximately 15 during the first 30 time units. 

The features described are similar to the 8 = 20" disturbance seen in figure 9. In 
order to determine whether the mechanism generating the growth is similar we will 
perform the numerical amplitude expansion previously done for the 8 = 0 disturbance. 
We use the same three values of E and solve the system (21) at each grid point for t = 
15. The energy spectra of the linear, quadratic and cubic terms obtained using this 
procedure are seen in figure 22. The linear spectrum has now lost is initial axisymmetry 
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FIGURE 21. Normal velocity for the moderate-amplitude axisymmetric disturbance with e = 0.0138 at 
t = 30 and y = -0.56. (a) Normal velocity, (b) streamwise velocity. Contour spacing 2.5 x for the 
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FIGURE 22. Energy spectra at t = I5 obtained from the amplitude expansion of the axisymmetric 
disturbance. (a) Linear part. (b )  Quadratic part. (c)  Cubic part. Contour spacing 1 decade. 

and instead has most of the energy concentrated around the spanwise wavenumber 
axis. This is again due to the transient growth experienced by the normal vorticity in 
this region of wavenumber space. The quadratic and cubic spectra show that the initial 
nonlinear interactions propagate the energy up the spanwise wavenumber axis. This is 
similar to the /3-cascade seen for the 8 = 0 disturbance. Note that the streaks generated 
by the quadratic term have a spanwise scale half of that of the linear streaks and can 
be most clearly seen in the normal velocity (figure 21 a), since that velocity component 
does not have a large growth caused by the linear mechanism. The streamwise velocity, 
on the other hand, is dominated by the growth associated with the linear term. 

In addition to having qualitatively the same initial nonlinear interactions and streak 
formation process as the initial disturbance with counter-rotating vortices, the large- 
amplitude axisymmetric disturbance also develops distinct and strong streamwise 
vortices. Figure 23 shows the streamwise vorticity in a (y,z)-plane. A strong 
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FIGURE 23. Streamwise vorticity at x = 23 and t = 40 obtained from the large-amplitude 
axisymmetric disturbance (F = 0.0276). Contour spacing 0.25. 
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streamwise vortex has developed at the bottom of the channel with a strength 
comparable to that seen in figure 18. Here it is only seen at the bottom of the channel, 
however. This is most likely a result of the asymmetric initial amplitude of the 
disturbance in the normal direction in which most of the perturbation energy is located 
in the bottom half of the channel. 

8.2. Comparison with the boundary-layer case 
The linear development of a localized disturbance in a Blasius boundary-layer flow 
may be expected to differ somewhat from the Poiseuille case, owing to the different 
linear stability characteristics of the two flows. The linear critical Reynolds number, 
based on the maximum velocity and the displacement thickness S,, is about 500 for the 
Blasius flow and 1900 for the Poiseuille flow. At equal R e ,  the wave packet thus can 
be expected to be more important in the boundary layer, at least for long times. 

Breuer & Landahl (1990) investigated the development of disturbances with a low 
but finite amplitude in Blasius flow at R e ,  = 950 and observed the nonlinear 
generation of streaks. This Reynolds number is practically identical to the one in the 
present Poiseuille flow study (Res* = 1000). The observations of Breuer & Landahl are 
however quite different from the present findings. They found that the inclined shear 
layer that forms in the central part of the disturbance experiences a secondary 
instability dominated by two-dimensional = 0) modes of high wavenumber. This 
secondary instability was found to be completely confined to the central portion of the 
disturbance. 

To investigate this discrepancy, the boundary-layer simulations of Breuer & Landahl 
were here repeated with particular emphasis on possible effects of insufficient spatial 
resolution. It was found that the secondary instability observed by Breuer & Landahl 
is a numerical artifact induced by insufficient resolution in the wall normal direction 
(see for example figure 3, t = 117 in that paper). In figure 24(a) the numerical 
instability is shown to appear when 33 spectral modes were used in the y-direction. This 
instability vanishes completely when twice that number of modes were used as seen in 
figure 24(b). A further increase of the number of modes in the y-direction to 97 and 
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increase of the resolution in the two other directions gave differences only slightly 
larger than the precision of the graphics, showing that these results are numerically 
converged. The strength of the numerical instability could be arbitrarily varied with the 
resolution in the normal direction. Tests showed that the presented results are 
unaffected by the vertical extent of the computational domain as long as it exceeds 38,. 
The effect of boundary-layer growth was also investigated and it was found that even 
a complete suppression of the growth gave only minor changes in the solution. Finally 
a simulation with a non-parallel boundary layer was performed and again the solution 
was essentially unaffected. 

Indeed the streak formation in the boundary layer (figure 25) is qualitatively the 
same as that in the Poiseuille flow (figure 9, t = 40). Note that t = 40 corresponds to 
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FIGURE 26. Energy evolution for the boundary-layer disturbances : (a) small-amplitude disturbance 
( E  = 0.001); (b) moderate-amplitude disturbance ( E  = 0.2): --, 0 = 0; ---, 0 = 10"; . . . . . ., 
0 = 45'; normalized by initial energy. 

120 if scaled with a,, and that the boundary-layer disturbance has an initial maximum 
normal velocity which is about five times lower than the normal velocity for the 
moderate-amplitude Poiseuille disturbance. 

To further substantiate the similarity of the Poiseuille and boundary-layer cases, 
asymmetric (0 + 0) disturbances were also considered in the boundary-layer flow. 
Figure 26 shows the evolution of total disturbance energy in the boundary layer for 
various values of 0, both for small and moderate amplitudes. The behaviour is seen to 
be similar to the Poiseuille case (figures 5a and 11 a) with the growth increasing with 
increasing rotation angle of the initial disturbance for the small-amplitude dis- 
turbances. For 19 = 0 the amplitude has just started to decrease by the end of the 
simulation. This difference from the marked decay in the corresponding Poiseuille flow 
simulation is most likely a result of low damping or even growth at this supercritical 
Reynolds number of several wave components which have small P/a. A subcritical 
boundary-layer simulation would give results resembling more closely the Poiseuille 
case. In both flows the spread in amplitude growth is much smaller in the moderate- 



202 D. S.  Henningson, A .  Lundbladh and A .  V. Johansson 

0 2 4 6 8 10 

FIGURE 27. Streamwise vorticity at x = 75 and t = 117 obtained from the large-amplitude 
disturbance in a boundary layer ( E  = 0.7). Contour spacing 0.1. 
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amplitude case. It is plausible to assume that the reason is the same nonlinear 
excitation of algebraic growth as seen in Poiseuille flow. Finally for a larger amplitude 
initial disturbance strong streamwise vortices with a circular cross-section develop at 
a position and with a strength close to that in the Poiseuille flow case (figure 27). Other 
qualitative flow features of this disturbance are also the same as the corresponding 
large-amplitude Poiseuille disturbance. 

Thus we have seen that localized disturbances in Poiseuille and boundary-layer flow 
behave in a similar manner. One should note, however, that the instability observed by 
Breuer & Landahl(l990) arose in conjunction with a shear layer associated with locally 
inflexional velocity profiles, and hence could intuitively be expected to be physical. To 
investigate whether the large numerical errors due to the insufficient resolution in their 
simulation possibly could be equivalent to the effect of free-stream turbulence or other 
perturbations of the flow and thus could have triggered a physical instability, we added 
noise to the well-resolved calculations. White wideband noise, spatially evenly 
distributed with a peak amplitude of 20% of the primary disturbance was used to 
model the perturbations. First the noise was superimposed on the initial flow field and, 
in a second simulation, on a flow field at t = 43. In neither case did the flow exhibit any 
instability. In a last effort to try to find an instability, the numerically induced wave 
packet at t = 43 was extracted from the unresolved calculations and added to the 
converged solution at that time. When the combined flow field was integrated in time 
the wave packet was found to grow slightly, although with a substantially lower growth 
rate than in the unresolved calculations. 

Although the possibility of a wave packet instability on the shear layer cannot 
completely be discarded based on these results, it seems highly unlikely that it would 
be seen in a real flow situation at these low amplitudes. It is well known that a high- 
amplitude disturbance can generate a lambda vortex structure with an instability 
resembling the Breuer & Landahl findings in the 'head ' of the vortex, see Kovasznay, 
Komoda & Vasudeva (1962). However, this occurs for a shear layer which is an order 
of magnitude stronger than in the present case. 

9. Conclusions 
Transition to turbulence from a localized disturbance was here studied by direct 

numerical simulations of disturbances with a range of amplitudes, starting from the 
stages of linear evolution to the final breakdown and formation of a small turbulent 
spot. Simulations of turbulent spots have previously been reported for Poiseuille, 
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boundary-layer and plane Couette flow (see Henningson et al. 1987; Lundbladh & 
Johansson 1991). In these studies the growth and spreading characteristics, as well as 
turbulence statistics have been determined. The present study is focused on the earlier 
phases of the transition to turbulence and presents the first simulation carried out with 
sufficient spatial resolution to ensure fully numerically converged solutions for all 
stages of the breakdown and formation processes. Small-amplitude simulations were 
also made and compared with results from linear expansions. 

It was demonstrated that for the evolution of localized disturbances in Poiseuille and 
boundary-layer flows, the kinetic energy becomes strongly dominated by the part 
associated with the normal vorticity generated by the three-dimensional liftup effect. 
The small-amplitude disturbances were shown to grow essentially algebraically over an 
increasing length of time with increasing amount of energy in lower streamwise 
wavenumbers. One should note that the growth in kinetic energy can occur despite 
decay of all of the eigenmodes. This transient growth is only possible because the 
eigenmodes are non-orthogonal and is physically due to tilting of the mean spanwise 
vorticity such that normal disturbance vorticity is created. The small-amplitude 
disturbances in Poiseuille flow were analysed using an eigenfunction expansion in 0s 
and SQ modes. It was found that the largest transient growth occurred for small 
streamwise wavenumbers, explaining the emergence of elongated structures in the 
streamwise direction. The eigenfunction expansion also showed that the initial phases 
of the growth was not mode-like but dominated by cancellation effects present when 
a number of non-orthogonal eigenmodes propagate. 

For finite amplitudes the nonlinear development becomes dominated by painvise 
wavenumber summations that give rise to disturbance components with zero 
streamwise wavenumber. Once energy was nonlinearly transferred to Fourier modes 
with zero streamwise wavenumbers it was shown that a linear mechanism caused the 
large growth seen in these components. These streaky structures rapidly constitute the 
main part of the disturbance. Thereby, the dependence on the initial amount of energy 
in low streamwise wavenumbers becomes largely eliminated. The results imply that 
practically all localized disturbances will develop a streaky horizontal velocity pattern, 
since energy in low streamwise wavenumbers is in general generated by nonlinear 
interactions if it is not present initially. These nonlinear interactions also produce 
increasingly smaller scales. It was further pointed out that the total disturbance energy 
can only grow due to linear effects. For subcritical flows this means that the transient 
growth effects analysed in the present paper must operate for transition to take place. 

The breakdown stage of the localized disturbances in Poiseuille flow was also 
analysed. It was shown that a strong streamwise vortex formed on either side of the 
symmetry plane at z = 0. The sharp shear layers associated with the lower vortices were 
seen to roll up, giving a situation similar to the first spike stage observed in the 
breakdown of large-amplitude two-dimensional TS waves. After the first sign of 
breakdown the disturbance quickly developed into a small turbulent spot. 

Breuer & Haritonidis (1990) found that a dominating feature of the evolution of 
small-amplitude localized disturbances in boundary layers is the generation of an 
inclined shear layer by the liftup effect. This effect was found in the present study to 
be essentially identical in Poiseuille flow. 

The symmetric finite-amplitude disturbances presented here are qualitatively the 
same as the ones presented by Chambers & Thomas (1983) in their investigation of the 
early stages of breakdown of localized disturbances in boundary-layer flow. They also 
found that it is the streaky pattern in front of the wave packet that breaks down and 
forms a turbulent spot. 
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Cohen et al. (1991) studied a local disturbance in the form of a low-amplitude small 
air pulse in a supercritical boundary-layer flow. In this situation the initial growth was 
found to be dominated by that of the two-dimensional TS wave followed by a Craik- 
type subharmonic resonance. The measured energy spectra after the resonance stage 
exhibit dominant peaks for oblique waves, which interact to transfer energy to low 
streamwise wavenumbers in a manner similar to that in the present investigation. 

Klingmann (1992) used a substantially stronger disturbance in the form of an air 
pulse in plane Poiseuille flow at Re = 1500. After an initial strongly nonlinear phase 
she observed a fairly large-scale elongated disturbance. She concluded that the 
subsequent growth could essentially be explained by linear mechanisms. For higher 
initial amplitudes she found generation of smaller spanwise scales and subsequent 
breakdown involving a short spike of length similar to that shown in figure 19 in the 
present investigation. 

Breuer & Landahl (1990) investigated the development of the corresponding finite- 
amplitude disturbances and observed the nonlinear generation of streaks. However, 
their results indicated a rather different breakdown scenario from that found in the 
present study. The discrepancy was here shown to be ascribable to insufficient 
numerical resolution in their study. High-resolution boundary-layer computations 
were here carried out, and shown to yield a behaviour in the weakly nonlinear regime 
quite similar to that for Poiseuille flow. 

The results presented here, as well as those of the other investigators discussed 
above, show that a transition scenario starting with localized disturbances can bypass 
the growth of two-dimensional TS waves and their secondary instability. It is plausible 
to assume that excitation of the algebraically growing normal vorticity along the 
spanwise wavenumber axis is an integral part of the growth mechanism for all of these 
cases, particularly when the total disturbance energy can only increase due to linear 
effects. 

The prominence of Fourier components with zero streamwise wavenumber has also 
been noted in compressible simulations of transition on a cone (Pruett & Zang 1992), 
in simulations of incompressible channel flow starting with random disturbances (Kim 
& Moser 1989) and in simulations of incompressible boundary layers using the 
parabolized stability equations (Bertolotti & Herbert 1990). Schmid & Henningson 
(1992) started with two interacting oblique waves in Poiseuille flow and showed that 
nonlinearly induced Fourier components with low streamwise wavenumbers generated 
practically all of the total disturbance growth by the linear mechanism described in the 
present investigation. These investigations suggests that the essentially linear 
mechanism described here is operating in a wide variety of flow situations and is not 
only relevant for the particular transition scenario investigated in this study. 

For the disturbances studied here the streamwise vorticity associated with the 
streaky structures develop into strong vortices if the disturbances is strong enough. The 
streamwise vortices in turn experience a highly localized and rapid breakdown which 
quickly results in a turbulent spot. An interesting question is whether this second part 
of the bypass transition scenario is as general as the nonlinear excitation of transient 
growth appears to be. These and other key questions will presently be studied in order 
to yield an improved understanding of this transition mechanism. 
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